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Abstract 
 

The problem considered in this paper is to locate storage containers 
while a set of container storage and retrieval requests are sequenced. Two 
automated cranes stack and retrieve containers in a single block of a yard. 
The cranes cannot pass each other and must be separated by a safety 
distance. Storage containers are initially located at the seaside and 
landside input/output (I/O) points of the block. Each must be stacked in a 
specific location of the block, selected from a set of open locations 
suitable for stacking the storage container. Retrieval containers are 
initially located in the block and must be delivered to the I/O points. Due 
to the importance and acceptable waiting times of different modes of 
transport, requests have different priorities. The problem is modeled as a 
multiple asymmetric generalized traveling salesman problem with 
precedence constraints. The objective is to minimize the makespan. We 
have developed an adaptive large neighborhood search heuristic to quickly 



compute near-optimal solutions. The numerical experiments show that the 
solution method can obtain near-optimal solutions. 

 
1 Introduction 
 
Containerized transportation has become an essential part of world trade during the past 
decades [1]. A large terminal handles millions of containers on an annual basis. Figure 1a 
depicts a typical container terminal layout with several blocks of containers in the stack 
area. Containers arrive or leave the terminal from the seaside and landside and spend a 
period of time in these blocks consisting of multiple rows, tiers, and bays, as shown in 
Figure 1b. An input/output (I/O) point is located at each end of a block and two 
automated stacking cranes (ASCs) are used to stack and retrieve containers in that block. 
These can move along the bays and rows of the block simultaneously, but cannot pass 
each other. Thus, the seaside (landside) ASC carries out all requests that have to be 
stacked or retrieved to the seaside (landside). Furthermore, for security reasons, the 
distance between the two ASCs cannot be less than a minimum safety limit.  
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Figure 1:  Schematic representation of a container yard layout. 

 
Container terminal managers attempt to efficiently manage the logistic process of the 

terminals to keep up with the increasing number of containers to be handled. The 
stacking area is highly critical since most of the containers transiting through a container 
terminal must be stored for a certain length of time, possibly in different blocks. To 
improve the stacking operations, many new container terminals use more than one ASC 
for each block [2, 7]. However, a key factor in efficiently handling the stacking 



operations and preventing the block from becoming a bottleneck is not only the number 
of ASCs, but also the scheduling of their operations. 

In this paper, we study the problem of minimizing the makespan of the two ASCs 
carrying out a set of storage and retrieval requests in a block of containers. In addition to 
determining the order in which to carry out the requests, we determine a location for each 
storage request under the following operational constraints. When a container is to be 
retrieved to the seaside, the seaside ASC picks it up from its location in the block and 
drops it at the seaside I/O point. When a storage request is to be stacked from the seaside, 
the seaside ASC picks it up and stores it in a location in the block, selected from a set of 
available open locations specified for that request. Each open storage location can be 
occupied by at most one container. Landside operations can be carried out similarly. We 
consider different priorities in stacking or retrieving containers. We formulate this multi-
crane problem as a multiple asymmetric generalized traveling salesman problem with 
precedence constraints (mAGTSP-PC). The model also contains additional constraints 
regarding the interactions of the ASCs and the selection of open storage locations which 
lie in the intersection of multiple sets. We develop an adaptive large neighborhood search 
heuristic for this problem. 

A major body of research on the yard crane scheduling problem is focused on 
retrieving a set containers. Kim and Kim [1] schedule a yard crane to retrieve containers 
from several blocks in the stacking area of a terminal. They propose a discrete time 
network model in which the objective is to minimize the total travel time of the crane to 
carry out all retrieval requests. Narasimhan and Paleka [3] also study a model in which a 
single yard crane retrieves containers from a single block. They prove that the problem is 
NP-hard and develop a branch-and-bound algorithm. For large size instances, they 
propose a heuristic with a worst-case performance ratio of 1.5. Ng [4] schedules several 
yard cranes to carry out a set of retrieval requests with different ready times in a yard 
zone, defined as multiple blocks located behind each other in a row. The yard cranes 
cannot pass each other and cannot exit the zone. They propose a discrete time mixed 
integer model and solve it by means of a heuristic based on dynamic programming. The 
objective function is to minimize the total completion time. In more recent papers, 
retrieval and storage requests are considered simultaneously. Zhang et al. [8] propose a 
discrete time mixed integer linear model for a problem in which several yard cranes carry 
out a given workload in multiple blocks. Based on their definition, a workload can consist 
of storage and retrieval requests. The objective is to minimize the total unfinished 
workload at the end of each time period. 

Since the use of double cranes limited to a block of containers is a new technology, 
scheduling models for such configurations can only be found in more recent papers. Li et 
al. [2] introduce a discrete time model to schedule two ASCs carrying out the storage and 
retrieval requests in a single block with an I/O point located at one side of the block along 
the bays. The ASCs cannot pass each other and must be separated by a safety distance. 
The requests have different due times and the objective is to minimize a weighted 
combination of earliness and lateness of all requests, compared to their due times. They 
introduce a rolling horizon algorithm in which a horizon of a specific length is defined, 



and all requests falling within this horizon are considered and optimized by CPLEX. The 
horizon is updated whenever all its requests have been scheduled. Vis and Carlo [7] also 
consider a similar setting. However, in their problem the ASCs can pass each other but 
cannot work on the same bay simultaneously. In their problem, requests do not have any 
due time and can be scheduled in any sequence. They formulate the problem as a 
continuous time model and minimize the makespan of the ASCs. They solve it by 
simulated annealing algorithm. 

Our scientific contribution is to develop and solve a continuous time model to 
schedule two interacting ASCs working in a single block of containers. No continuous 
time model with a similar set of constraints has yet been proposed for this problem. Our 
model incorporates precedence constraints, ASC interaction constraints, and constraints 
that assign each container to a storage location selected from a given set. Considering 
these constraints is valuable not only from a theoretical standpoint but also from a 
practical point of view. In practice, containers have different priorities, and a set of 
suitable open locations is available for each container that has to be stacked. The 
mAGTSP and its variants have been shown to be NP-hard (see, for example, [3]) and the 
new features introduced in this study make the problem even more difficult to solve. 

The remainder of this paper is organized as follows. In Section 2, we describe the 
technical aspects of the problem and present our mathematical model. Section 3 describes 
the heuristic. Section 4 presents numerical results, and Section 5 contains the 
conclusions. 
  
2 Problem description and mathematical model 
 
We seek to determine the sequence to stack containers of ݊ storage requests and retrieve 
containers of ܰ െ ݊ retrieval requests in a single block of containers consisting of ܺ 
rows, ܻ bays, ܼ tiers and two I/O points, one at each end of the block. We denote by ܵ 
and ܮ the seaside and landside I/O points, respectively. Let ࣬ be the set of all requests, 
whereas ࣬௦ and ࣬௟ be the sets of requests that must be picked up or dropped off at ܵ and ܮ, respectively. 

The objective is to minimize the makespan of the two ASCs carrying out these 
requests. We denote by ܥܵܣ௦ the seaside ASC assigned to ࣬௦, and by ܥܵܣ௟ the landside 
ASC assigned to ࣬௟. Each ASC can carry only one container at a time. From a given 
starting point, each ASC can execute its requests in any sequence in order to minimize its 
total travel time. We denote by 0௦ and 0௦ᇱ , respectively, the starting and ending locations 
of ܥܵܣ௦, whereas 0௟ and 0௟ᇱ are the corresponding locations for ܥܵܣ௟. These locations can 
be anywhere in the block. The ASCs cannot pass each other and have to be separated by a 
distance taking ߬ time units to travel. Every storage or retrieval request ݎ ∈ 	࣬ ൌሼ1, … , ܰሽ corresponds to a unique container. For storage request ݎ, an ASC moves a 
container from the I/O point where it is located to a location ݅ selected from a given set ࣦ௥ of available open locations. For retrieval request ݎ, an ASC moves a container from 
location ݆ to an I/O point. For ease of notation, we write that the location ݆ of retrieval 



request ݎ belongs to ࣦ௥. Thus, we can define the set ࣰ of all locations. For each storage 
location in ࣰ lying in the intersection of multiple sets, a copy is created for each set to 
which it belongs. The copy locations will be used in the model to avoid stacking multiple 
containers in the same location. 

The problem can now be stated mathematically as the following integer linear 
program. Denote by ௞ࣰ the set of locations of requests in ࣬௞, which includes the starting 
and ending locations of ܥܵܣ௞. As a result, let ݔ௜௝ be the binary decision variable which 
equals 1 if and only if location ݆ ∈ ௞ࣰ is visited immediately after location ݅ ∈ ௞ࣰ, ∀݇ ∈ࣥ. The objective function minimizes ܥ, the makespan of the two ASCs: 

 
Minmize (1) .ܥ

 
Constraints (2)-(3) below mean that each set must be entered and exited exactly 

once. In these constraints, ࣦ௥ᇱ ൌ ⋃ ࣦ௘௘∈࣬ೖ௘ஷ௥ , ݎ	∀ ∈ 	࣬௞, ∀݇ ∈ ࣥ: 

 ෍ ෍ݔ௜௝௜∈ࣦೝ௝ஷ௜௜∈ࣦೝᇲ ൌ 1, ݎ∀ ∈ ࣬௞\ሼ0௞ሽ, ∀݇ ∈ ࣥ, (2)

෍ ෍ݔ௜௝௜∈ࣦೝᇲ௝ஷ௜௜∈ࣦೝ ൌ 1, ݎ∀ ∈ ࣬௞\ሼ0ᇱ௞ሽ, ∀݇ ∈ ࣥ. (3)

 
Constraints (4) are the network flow conservation constraints. Constraints (4)-(5) 

ensure that in an optimal solution, each location can receive at most one container, and 
each container is stacked somewhere. In constraint (5), ࣣ	is the set of storage locations in 
the intersection of multiple sets, and ࣫௜ is the set of all copies of storage location ∀݅ ∈ ࣣ: 

 ෍ ௜௝௜∈ࣰೖ௜ஷ௝ݔ
ൌ ෍ ௝௟௟∈ࣰೖ௟ஷ௝ݔ

൑ 1, ∀݆ ∈ ௞ࣰ, ∀݇ ∈ ࣥ, (4)

෍෍ݔ௜௝௜∈࣫೔௝ஷ௟௜∈ࣰ ൑ 1, ∀݅ ∈ ࣣ. (5)

 
Constraints (6) define ܥ௜, the arrival time of an ASC at location ݅, ∀݅ ∈ ࣰ, whereas, ݐ௜௝	is the travel time of the ASC from location ݅ to location ݆ in the block.  In these 

constraints, ܯ is a large constant. Constraints (7) are used to define the makespans of the 
ASCs based on their arrival times at their finishing points, 0௦ᇱ , and 0௟ᇱ: 

௜ܥ  ൅ ௜ܶ௝ െ ௝ܥ ൑ ൫1ܯ െ ,௜௝൯ݔ ∀݅, ݆ ∈ ௞ࣰ, ∀݇ ∈ ࣥ, (6)



ܥ ൒ ,௝ܥ ∀݆ ∈ ሼ0௦ᇱ , 0௟ᇱሽ. (7)
 
Let ௜࣪ି  be the set of storage or retrieval locations that have to be visited before 

location ∀݅ ∈ ࣰ if they appear in a feasible solution. Constraints (8) ensure that location ݅ 
is visited after all locations ݆, ∀݆ ∈ ௜࣪ି : 

௜ܥ  ൒ ,௝ܥ ∀݅ ∈ ࣰ, ∀݆ ∈ ௜࣪ି . (8)
 
Let ࣜ௜ be the set of all locations behind location ݅	that cannot be visited by the other 

crane because of the no-passing constraint. Furthermore, ࣛ௜ is the set of all locations in 
front of location ݅ that can only be visited by the other crane at least ߬ time units after the 
moment that location ݅ has been visited. Thus, the interaction between the ASCs can be 
modeled by constraints (9)-(11). Let ݖ௜௝ indicate whether location ∀݅ ∈ ௞ࣰ, ∀݇ ∈ ࣥ has to 
be visited before location ∀݆ ∈ ࣰ௞ᇲ, ∀݇′ ∈ ࣥ: 

௜௝ݖ  ൅ ௝௜ݖ ൌ 1, ∀݅, ݆ ∈ ࣰ, ݅ ് ௜ܥ(9) .݆ ൅ ൫߬ െ หݕ௜ െ ௝ห൯ݕ ൑ ൫1ܯ െ ௜௝൯ݖ ൅ ,௜௝ܥ ∀݅ ∈ ࣰ, ∀݆ ∈ ࣛ௜, (10)ܥ௜ ൅ ൫߬ ൅ หݕ௜ െ ௝ห൯ݕ ൑ ൫1ܯ െ ௜௝൯ݖ ൅ ,௜௝ܥ ∀݅ ∈ ࣰ, ∀݆ ∈ ࣜ௜. (11)
 
Finally, we need the integrality and non-negativity constraints. 
 

3. Adaptive large neighborhood search heuristic 
The complexity of the problem means that only relatively small instances can be solved 
to optimality within a reasonable time. To solve real-size problems, we have developed 
an adaptive large neighborhood search (ALNS) heuristic. This type of heuristic was 
initially proposed by Ropke and Pisinger [5], and is based on the LNS search scheme 
previously developed by Shaw [6]. In the ALNS, the search starts from a feasible solution 
generated by a simple construction heuristic. The ALNS attempts to improve this solution 
by sequentially applying several elementary operators to remove a subset of requests 
from the solution and reinsert them. 

 
3.1. Operators 
We have developed several removal and insertion operators, all of which are applied to a 
feasible solution. Note that in this problem, one of the ASCs needs to visit a unique 
location for each request. In our operators, we refer to corresponding requests of 
locations. 
Random removal: In this type of removal, ݍ requests are randomly removed from the 
solution. 
Worst removal: Assume that Δሺݎ, ܺሻ is the travel time of request ݎ to its predecessor and 
successor requests in the solution. The worst removal operator removes ݍ requests with 
the largest Δሺݎ, ܺሻ. Note that we do not define Δሺݎ, ܺሻ as the effect of removing request ݎ 



in the objective function. Indeed, because of the interactions between the ASCs, and 
because of the precedence constraints, fully evaluating the objective function for each 
partial solution is rather time consuming. Our simplified approach avoids this 
computation. 
Location removal: One of the features of our problem is the presence of sets of open 
locations to stack storage containers. In the heuristic used to generate a feasible initial 
solution, the location for each storage container is randomly selected from its set of 
available open locations. If no operator is applied to assign new locations, the selected 
locations do not change, which results in lost opportunities to improve the solution. The 
location removal operator, randomly selects ݉ܽݔሼ݊,  ሽ storage requests and removes theݍ
locations assigned to them. 
Greedy reinsertion: Let Δ ௥݂ be the travel time of request ݎ to its predecessor and 
successor request by inserting it in its best position. The greedy operator inserts the 
request minimizing Δ ௥݂, over all removed requests. After inserting a request, the operator 
updates the Δ ௥݂values and is reapplied. 
Random reinsertion: This operator randomly reinserts the requests into the partial 
solution. 
Location insertion: The location removal operator previously described can only be 
followed by the location insertion operator. For each storage request with a removed 
location, this operator randomly selects a new location from its set of available open 
locations. 
 
3.2. Choosing a removal operator or a insertion operator 
We run the ALNS algorithm for a preset number of iterations. At each iteration, the 
selection of a removal or insertion operator is governed by a roulette-wheel mechanism 
which selects operator ݋ from the set of removal or insertion operators with probability ݓ௢/∑ ௢ᇲை௢ᇲୀଵݓ 	, where ݓ௢ is the weight of operator	݋, and ܱ is the number of operators of 
the set. In the ALNS, an initial weight is assigned to each operator and the weights are 
then updated after every δ iterations of the algorithm. The updates are based on the score 
that each operator has gained during the past δ iterations. At each iteration, the score of 
each operator is updated based on its performance: the weight of each removal or 
insertion operator used in the current iteration is incremented by ߪଵ	if their application 
result in a new best solution; by ߪଶ if result in a better incumbent solution; and by ߪଷ	if 
result in a solution which is not better than the best solution found and incumbent 
solution but is accepted, where ߪଵ ൒ ଶߪ ൒  iterations, respectively.  The ߜ and the number of times it has been selected after ݋ ௢ be the total score of operatorߠ ௢ andߨ ଷ. Letߪ
weight of operator ݋ is then updated as ݓ௢ ← ௢ሺ1ݓ െ ሻߩ ൅ ߩ ௢, whereߠ/௢ߨߩ ∈ ሾ0,1ሿ is 
the reaction factor which controls how quickly the weight adjustment reacts to changes in 
the operator performance. 

The ALNS metaheuristic is executed within a simulated annealing (SA) framework. 
In the SA framework, if the solution found at the current iteration is better than the 

current solution, it is accepted. Otherwise, it is accepted with probability ݁ିቀ௓൫ௌᇲ൯ି௓ሺௌ∗ሻቁ/் 



where ܶ	is the temperature, ܼሺܵᇱሻ and ܼሺܵ∗ሻ are the objective values of the solution at 
the current iteration and best solution, respectively. The temperature starts at ௦ܶ௧௔௥௧	and is 
updated at each iteration as ܶ ← ܶ߶, where 0 ൏ ߶ ൏ 1 is a cooling rate. We terminate 
the algorithm after a number of runs. 

 
4. Computational experiments 
In this section, we compare the results of the ALNS with those results of truncated 
CPLEX, and some other simple heuristics.  In our experiments, we consider a block with 
40 bays, 10 rows, and four tiers. The number ܰ of requests is set to 10 and 25. We 
assume an equal number of open locations |ࣦ௥| for storage requests ݎ ൌ 1,… , ݊, and we 
set |ࣦ௥| equal to 1 or 3. As a result we perform basic experiments on five randomly 
generated instances in each case. Each instance has the same number of retrieval and 
storage requests. All locations are uniformly distributed over the block, and an equal 
number of requests have to be picked up or delivered to the landside and the seaside. The 
landside ASC starts its operations from ܮ and ends either at the storage position of a 
storage request if this is the last request in the sequence, or at ܮ if a retrieval request is the 
last request. Similarly, the seaside ASC starts from ܵ and either finishes in a storage 
position or at ܵ. We assume that the containers are categorized in six priority levels of 
decreasing importance. 

Tables 1 and 2 compare the makespan and computation time of the ALNS and 
truncated CPLEX over different instances. For each instance, we apply the ALNS 20 
times each with a different random initial solution. The CPLEX algorithm is applied to 
each instance only once in order to find a solution for the mAGTSP-PC and mAGTSP 
which is a relaxed problem without the precedence constraints and the ASC interaction 
constraints. The computation time of CPLEX for finding an optimal or even a feasible 
solution for the mAGTSP-PC is very high and we therefore truncate it after four hours, 
whereas the mAGTSP can be quickly solved. Column ܩ௓௅஻ shows that the gap between 
the lower bound and the optimal mAGTSP-PC solution is large. The gap stems from the 
fact that the new constraints significantly affect the sequence of requests carried out by 
the ASCs. This suggests that although the gap between the average ALNS solution value 
and the lower bound may be large in some cases, this does not necessarily reflect on the 
quality of the ALNS algorithm. A fair assessment is to compare the average result of the 
ALNS with the best known objective value. 

 
Table 1:  Results of the ALNS and CPLEX for Experiments 1, and 2. 

 
inst 

CPLEX results ALNS results 
LB CPU Z CPU ܩ௓௅஻ Min Max Ave ܩ஺௩௘௠௜௡ ܩ௠௜௡௓ ஺௩௘௓ܩ   CPU 

 

Experiment 1 (ܰ ൌ 10, |ࣦ௥| ൌ 1, ݎ ൌ 1,… ,5ሻ 
1 348.83 0.00 387.59 0.10 10.00 387.59 387.59 387.59 0.00 0.00 0.00 0.75 
2 288.29 0.01 386.53 0.40 25.42 386.53 386.53 386.53 0.00 0.00 0.00 0.73 



3 343.05 0.00 426.17 0.02 19.50 426.17 426.17 426.17 0.00 0.00 0.00 0.80 
4 337.50 0.01 398.74 0.12 15.36 398.74 398.74 398.74 0.00 0.00 0.00 0.75 
5 234.95 0.01 289.52 0.06 18.85 289.52 289.52 289.52 0.00 0.00 0.00 0.79 

Ave 310.52 0.01 377.71 0.14 17.83 377.71 377.71 377.71 0.00 0.00 0.00 0.76 
Experiment 2 (ܰ ൌ 10, |ࣦ௥| ൌ 3, ݎ ൌ 1,… ,5ሻ 

1 288.29 0.01 356.32 3.54 19.09 356.32 356.32 356.32 0.00 0.00 0.00 0.81 
2 319.38 0.01 419.15 2234.84 23.80 419.15 419.15 419.15 0.00 0.00 0.00 0.93 
3 313.97 0.02 346.08 1699.35 9.28 346.08 350.05 346.88 0.23 0.00 0.23 0.89 
4 275.06 0.02 291.56 13.80 5.66 291.56 291.56 291.56 0.00 0.00 0.00 0.84 
5 336.81 0.01 392.46 6.55 14.18 392.46 419.05 397.53 1.27 0.00 1.27 0.86 

Ave 306.70 0.01 361.11 791.62 14.40 361.11 367.23 362.29 0.30 0.00 0.30 0.87 
Note. LB is the optimal solution of the AGTSP. Z is the feasible or optimal solution of mAGTSP-PC. Columns 
CPU show the computation time in seconds. For CPLEX, when CPU < 14400 seconds, the optimum is 
attained. The computation time of the ALNS is an average over 20 runs. The gaps are calculated as: ܩ௔௕ሺ%ሻ ൌ൫ሺܽ െ ܾሻ/ܽ൯ ൈ 100. 

 
Table 2:  Results of the ALNS and CPLEX for Experiments 3, and 4. 

 
inst 

CPLEX results ALNS results 
LB CPU Z CPU ܩ௓௅஻ Min Max Ave ܩ஺௩௘௠௜௡ ܩ௠௜௡௓ ஺௩௘௓ܩ   CPU 

 

Experiment 3 (ܰ ൌ 25, |ࣦ௥| ൌ 1, ݎ ൌ 1,… ,13ሻ 
1 660.26 0.02 728.36 14400 9.35 728.36 756.00 739.19 1.47 0.00 0.11 3.50 
2 608.06 0.02 747.62 11730.83 18.67 747.62 789.15 761.44 1.81 0.00 0.14 3.26 
3 733.75 0.02 749.54 14400 2.11 749.54 776.57 758.57 1.19 0.00 0.09 3.35 
4 675.55 0.01 805.03 14400 16.08 805.03 812.33 806.77 0.22 0.00 0.02 2.97 
5 809.92 0.02 827.04 14400 2.07 826.78 854.89 834.26 0.90 -0.03 0.07 3.12 
Ave 697.51 0.02 771.52 13866.17 9.66 771.47 797.79 780.05 1.12 -0.01 0.09 3.24 

Experiment 4 (ܰ ൌ 25, |ࣦ௥| ൌ 3, ݎ ൌ 1,… ,13ሻ 
1 653.96 0.07 952.04 14400 31.31 952.04 952.04 952.04 0.00 0.00 0.00 4.41 
2 715.18 0.06 846.43 14400 15.51 842.57 849.37 845.80 0.38 -0.46 -0.01 4.42 
3 624.06 0.06 869.14 14400 28.20 869.14 906.20 885.17 1.81 0.00 0.16 4.09 
4 738.29 0.06 776.28 14400 4.89 767.41 824.80 809.12 5.15 -1.16 0.33 4.96 
5 659.84 0.06 860.45 14400 23.31 860.45 870.99 863.61 0.37 0.00 0.03 4.66 
Ave 678.27 0.06 860.87 14400 20.64 858.32 880.68 871.15 1.54 -0.32 0.10 4.51 

 
Next, we compare the ALNS with some simple constructive heuristics such as 

nearest neighbor (NN), and random heuristics. In the NN heuristic, each ASC travels to 
the nearest request until all requests are performed. Due to the precedence constraints, 
sequencing the requests of each ASC regardless of the other one may result in a poor 



solution. As a result, we use a modified NN in which we choose a seaside or landside 
ASC with 50% probability and travel to the nearest requests of the previously carried out 
requests of that ASC. Table 3 shows that the ALNS outperforms both. 

 
Table 3:  A comparison of the ALNS and two heuristics. 

Inst ALNS NN ܩேே஺௅ேௌ Rand ܩ௥௔௡ௗ஺௅ேௌ 
Expr. 2 Inst. 1 356.32 473.25 24.71 490.70 27.39 
Expr. 4 Inst. 1 952.04 1293.09 26.37 1348.89 29.42 

 
5. Conclusion 
We have modeled and solved a problem arising in a container terminal, consisting of 
scheduling two ASCs to execute a set of storage and retrieval requests in a block. Several 
constraints were considered: (1) the ASCs cannot pass each other and, for security 
reasons, the ASCs must be separated by a safety distance; (2) each storage container must 
be stacked in a location selected from a set of available open locations; and (3) because of 
waiting times and of the presence of several container transport modes, containers have 
different storage and retrieval priorities. We have formulated the problem as a multiple 
AGTSP with precedence constraints and ASC interaction constraints. Due to the 
complexity of the problem, it can be only solved exactly for small size instances. We 
have therefore developed an ALNS heuristic capable of solving instances of realistic 
sizes. Our experiments demonstrate that the ALNS outperforms truncated CPLEX and 
heuristics. 
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