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Abstract  
 

In this paper we consider a capacitated single allocation p-hub median 
problem with multiple capacity levels (CSApHMPMC) in which the decisions are 
to determine the location of p hubs and their capacity levels, the single allocation 
of non-hub nodes to hubs in the logistics network. This problem is formulated as 
an integer programming model with the objective of minimizing the sum of total 
transportation cost and fixed cost of the selected p hubs with established capacity 
levels. A Lagrangian relaxation (LR) approach is proposed to solve the 
CSApHMPMC. The Lagrangian function that we formulated decomposed the 
original problem into smaller subproblems that can be solved easier. We only 
solve the CSApHMPMC using Gurobi optimizer for the small sized problems. 
The experimental results show that the proposed LR heuristic can be an effective 
solution method for the capacitated p hub median location problem with multiple 
capacity levels. 

 

1 Introduction 
 

Hub-and-spoke networks are widely used in a variety of industries such as airline, postal delivery, 
and telecommunication to efficiently route flows between many origins and destinations. The 
key feature lies in the use of collection of flows from the origin to the hub, transfer flows 
between hubs, and distribution of flows from the hub to destinations. Hub location problem 
(HLP) consists of locating hub facilities and of designing hub networks such that the sum of 
transportation cost and fixed facility cost is optimized.  

The fundamental HLP has been extended in many features, such as node allocation type, 
hub capacity limitation, and the number of hubs is known or unknown priori. For node allocation, 
each non-hub node can be allocated either to one hub (single allocation) or to multiple hubs 
(multiple allocation). The hub capacity could be uncapacitated or capacitated. The latter one is 
close to the realistic condition. If the number of hubs is pre-determined to p, it is called p-hub 
location problem (pHLP). Klincewicz [12], Campbell et al. [4], Alumur and Kara [1], Campbell 
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and O’Kelly [5] and Zanjirani Farahani et al. [15] provided a good survey on different hub 
location problems.  

The majority of research has addressed uncapacitated HLPs. There are just a few articles in 
the literature dealing with capacitated version of HLPs. Campbell [3] produced the first mixed 
integer linear programming (LP) formulation for the capacitated single allocation HLP 
(CSAHLP). Aykin [2] studied the capacitated hub location problem with direct links, as well as 
multiple allocation, and included capacity limitations and fixed costs for hubs. Ernst and 
Krishnamoorthy [11] extended the Skorin-Kapov et al. [14] formulation to the capacitated case 
and also proposed a mixed integer programming formulation. 

All of the above mentioned capacitated models considered that hub capacities are exogenous, 
i.e. capacity levels for candidate hub nodes are determined a priori. However, hubs are structural 
facilities that require several strategic decisions to be made in addition to the location decisions. 
Especially, the capacity that each hub should have can have a determining impact on locational 
and routing decisions. For instance, in the distribution center in distribution applications, the 
crucial capacity is number of docks to handle the inbound traffic. If the number of doors is not 
large enough, incoming traffic might be blocked and thus the distribution operations will be 
delayed. In recent years, some researchers have started studying more realistic capacitated 
models in which the amount of installed capacity is part of the decision process.  

Correia et al. [7] studied an extension of capacitated HLPs with single assignment in which 
the hub capacity (CSAHLPM) is a decision variable. Three different mixed integer linear 
programming formulations were provided and theoretically compared. Several preprocessing 
tests of reducing the size of the models were presented for each particular instance. Elhedhli and 
Wu [9] introduced congestion cost in the objective of a capacitated model in which hub capacity 
is also a decision variable. Correia et al. [8] extended CSAHLPM and imposed the allocation 
balance on selected hub locations. Two mixed-integer linear programming formulations were 
provided and compared with the instances in Correia et al. [7]. 

Contreras et al. [6] presented models with multiple assignments in which the amount of 
capacity installed at the hubs is part of the decision process, for both splittable and non-splittable 
commodity cases. Zarei et al. [16] considered capacitated multiple allocation p-hub median 
problem with multi-level capacity. Rastani et al. [13] presented a mixed integer linear 
programming model for a hub network with capacity constraints on both hubs and inter hub links. 
The decision variables include capacity levels for both hub and transfer links between hubs. The 
computational results with modified Correia et al. [7] formulation were provided.  

In this paper, we extend the capacitated single allocation p-hub median problem 
(CSApHMP) to determine the capacity decision simultaneously. It is called the capacitated 
single allocation p-hub median problem with multiple capacity levels (CSApHMPMC). It is 
assumed that there is a set of different sizes available for each candidate hub. We consider the 
case in which the capacity constraints refer to the incoming flows from non-hub nodes to that 
hub and flow originated in the selected hub.  

To the best of our knowledge, the CSApHMPMC has not been studied in the literature. The 
problem will be formulated as a mixed integer programming problem that is solved using a 
Lagrangian relaxation approach. Four sets of benchmark instances from the literature will be 
tested for the proposed Lagrangian relaxation heuristic and compared with the solutions obtained 
by the optimization solver Gurobi. 

The remainder of the paper is organized as follows. In the next section, the problem is 
described and the path-based mathematical formulation is proposed for the problem. In section 3, 
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we develop a Lagrangian relaxation scheme of the formulation by relaxing the constraints that 
link the assignment variables with the path variables. The Lagrangian function decomposes the 
relaxed problem into two smaller subproblems what can be solved efficiently. Computational 
results on benchmark instances are provided in section 4. Conclusions and future research 
directions follow in section 5. 

 
 

2 Problem Description 
 

Consider a network of n demand nodes and p hubs must be located. Each non-hub node is 
allocated to a single hub. The flow between an origin/destination (OD) pair (i, j) must be routed 
through either one or at most two hubs k and l. The cost of transport a unit of flow along the path 
i-k-l-j is computed as kl

ijC (k and l could be the same hub). The transportation cost for an OD (i, j) 

pair served via hubs k and l includes cost for collection from the origin i to hub k, transfer 
between hubs k and l, and distribution from hub l to the destination j. The rate for transfer cost 
between hubs is less than that for collection and distribution discount due to the economics of 
scale. Usually, the routing cost between two hub nodes is discounted at a rate of  to reflect the 
savings due to economies of scale. The hub capacities are allowed to take one of Qk capacity 
levels at candidate hub node k with corresponding fixed costs fk

q and the capacity size Bk
q, 

respectively.  
The CSApHMPMC consist in determining the location and capacity size of the selected p 

hubs as well as the routing of each origin-destination pair through the hub nodes. The objective 
is to minimize the sum of fixed cost and transportation cost to establish the p hubs. It is also 
assumed that every pair of origin-destination will contain at least one and at most two hubs.  

 
2.1 Notation 
 

The following notation is used throughout the paper.  
Parameters 

q
kB ： the capacity  for a hub at node k with capacity level q 
kl
ijC ： 

the transportation cost of a unit of flow from node i to node j routed via hubs k and l, 

ljklik
kl
ij dddC  

ijd ： the distance between nodes i and j
q

kf ： fixed cost of locating at node k with capacity level q 

N ： set of nodes  
p ： number of required hubs 

kQ ： set of available capacity levels of a candidate site k, }...,,1{ kk rQ   

ijw ： the flow between nodes i and j 

 ： the unit flow costs for transfer
 ： the unit flow costs for collection 
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 ： the unit flow costs for distribution
Decision variables 






otherwise0

 and  hubs  viarouted   to node from flow  theif1 lkji
X kl

ij  






otherwise0

  levelcapacity  has which  hub  toallocated is  node if1 qki
Z q

ik  

It is assumed that the triangle inequality holds for the distance matrix. The fixed costs also 
include the operation cost for the hub which dependent on the selected capacity level. Clearly, a 
necessary condition for the feasibility of the problem is that the total selected capacity should be 
at least as large as the total flow from each origin. 
 
2.2 Mathematical Programming Model 
 

We extend the uncapacitated single assignment p-hub location formulation by Skorin-Kapov et 
al. [14] to our CSApHMPMC. The model proposed for the problem considers two sets of 
classical decision variables in single allocation p-hub median problems under path-based 
formulation as follows.  

 
The objective function (1) minimizes the total cost which includes the transportation cost and the 
cost for installing the hubs. Constraint (2) ensures that exactly p hubs are chosen. Constraint (3) 
assures that node i can be allocated to hub k only when k is selected as a hub. Constraint (4) 
states that every node is allocated to exactly one hub. Constraint (5) ensures that for every 
destination j, the total flow from origin i to destination j routed via paths using link i-k will be 
nonzero only if node i is allocated to hub k with one selected capacity level. Similarly, 

Min 
    


Nk Qq

q
kk

q
k

Ni Nj Nk Nl

kl
ij

kl
ijij

k

zfxCw   (1)

S.T. 
 


Nk Qq

q
kk

k

pz   (2)

  q
kk

q
ik zz    kQqNki  ,,   (3)

  
 


Nk Nl

kl
ijx 1   Nji  ,   (4)

   
 


Nl Qq

q
ik

kl
ij

k

zx   Nkji  ,,   (5)

   
 


Nk Qq

q
jl

kl
ij

l

zx   Nlji  ,,   (6)

  
 


Ni Nj

q
kk

q
k

q
ikij zBzw

kQqNk  , (7)

  1
 kQq

q
kkz   Nk    (8)

   1,0kl
ijx Nlkji  ,,, (9)

   1,0q
ikz   kQqNki  ,,   (10)
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constraints (6) assures that for every origin i and every hub k, a flow through the path i-k-l-j is 
feasible only if j is allocated to hub l. Constraint (7) ensures that all the assigned demand to an 
opened facility must less than or equal to the selected capacity level. Constraint (8) states that 
every candidate hub k can only selected at most one capacity level. Constraints (9) and (10) are 
binary integrality constraints. It is noted that when |Qk| = 1 for all candidate hubs, the 
CSApHMPMC reduces to the classical CSApHMP. The problem can be solved with typical 
CSApHMP approaches. 
 
 
3 Solution Methodology 
 

Since the CSApHMP is NP-hard, the studied CSApHMPMC is also NP-hard. Solving the 
problem requires considerable running time as the size of the instances increase. We propose a 
Lagrangian relaxation heuristic to solve the problem. In order to simplify the problem, we relax 
the constraints that link the location/assignment variables with the flow variables (Eqs. (5) and 
(6)). Dualizing Eqs. (5) and (6) with Lagrangian multiplier vectors u and v, we obtain the 
following Lagrangian function L(u, v): 
 
Min    

        


Ni Nj Nk Qq Ni Nj Nl Qq

q
jlijl

q
ikijk

Nk Qq

q
kk

q
k

k mk

zvzuzfvuL ),(
 

+  
   


Ni Nj Nk Nl

kl
ijijlijk

kl
ijij xvuCw )(  

(11)

S.T 
 


Nk Qq

q
kk

k

pz  (2)

 q
kk

q
ik zz    kQqNki  ,,   (3)

  
 


Nk Nl

kl
ijx 1 Nji  ,   (4)

 
 


Ni Nj

q
kk

q
k

q
ikij zBzw

kQqNk  , (7)

  1
 kQq

q
kkz   Nk    (8)

   1,0kl
ijx Nlkji  ,,, (9)

  1,0q
ikz   kQqNki  ,,   (10)

 
Considering the independence between the two sets of variables, z and x, CSApHMPMC is then 
decomposed into two sub-problems. The first is a semi-assignment problem in a bipartite graph. 
The optimal solution is found by searching the minimum cost path among hubs k and l for each 
origin-destination pair (i, j) and setting the corresponding decision variable to 1 and the rest to 0.  
 
Min    

   


Ni Nj Nk Nm

kl
ijijlijk

kl
ijijx xvuCwvuL )(),( (12)

S.T 
 


Nk Nl

kl
ijx 1 Nji  ,   (4)

  1,0kl
ijx Nlkji  ,,, (9)
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The second sub-problem separated into sets of smaller problems, one for each candidate hub. In 
an attempt to strengthen the lower bound given by Lagrangian relaxations, we add a valid 
inequality which might be redundant for the formulation. This inequality is to ensure that the 
selected capacity levels of the opened facilities should provide enough capacity for all demand as 
in eq. (14). 
 

  
We apply subgradient optimization technique for solving the L(u, v). For a given vector (u, 

v), the Lagrangian relaxation processes are as follows. The output of the algorithm is a best lower 
bound LB and UB denotes a best upper bound on the optimal value of the original problem. The 
best lower bound corresponds to the optimal multipliers to the dual Lagrangian problem. The 
step size parameter m is halved if lower bound has not improved in a given number e of 
consecutive iterations.  
 
Step1. u0 = 0, v0 = 0, 1 = 2, UB = , LB = -, m = 1.  
Step 2. Use optimization software Gurobi to solve ),( vuLz  for selecting the p locations. 
Step 3. Find the assignment for non-hub nodes based on the selected p locations found in 

step 2 as follow. 

 Nji
NlkvuCw

x ijlijk
kl
ijijkl

ij 


 

 ,,
                                             otherwise0

},|min{1
 

Step 4. Compute Lagrangian objective function (Lm), if Lm > LB then LB = Lm. 
Step 5. Set qkikizq

ik ),(,,0   = 0.  

Step 5.1.  For each non-hub node i, find the nearest hub node ( 1ˆ q
kkz ),

Nizd q
kkik

k
 }1|{min ˆ

. 

Step 5.2  Set 1ˆ q
ikz . 

Min    
        


Ni Nj Nk Qq Ni Nj Nl Qq

q
jlijl

q
ikijk

Nk Qq

q
kk

q
kz

k lk

zvzuzfvuL ),(
 


   


kk Qq

q
ik

Ni Nk Nj
jikijk

Nk Qq

q
kk

q
k zvuzf )(  

(13)

S.T 
 


Nk Qq

q
kk

k

pz  (2)

 q
kk

q
ik zz    kQqNki  ,,   (3)

  
  


Ni Nj Qq

q
kk

q
k

Qq

q
ikij

kk

zBzw Nk  (7)

  1
 kQq

q
kkz   Nk    (8)

 
  


Ni Nj

ij
Nk Qq

q
kk

q
k wzB

k  
(14)

  1,0q
ikz   kQqNki  ,,   (10)
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Step 6. If  1ˆ q
kkz and q

kk
q
k

Ni

q
ik

Nj
ij zBzw ˆˆˆ 

 

then 

Step 6.1  Find q such that q
k

Ni

q
ik

Nj
ij

q
k BzwB  

 

 ˆ1 , qq ˆ . 

Step 6.2 Set 1ˆ q
kkz . 

Step 7. Set Nlkjizzx q
jl

q
ik

kl
ij  ,,,,ˆˆ  

Step 8. Computing Eq. (1) objective function (Objm), if Objm < UB then UB = Objm  
Step 9. Compute step size tm using Eq. (15) 
Step 10. Update Lagrangian multipliers, u and v, using Eqs. (16) and (17) 
Step 11. m = m+1 repeat Steps 2-10 until the stopping criterion is met. 
 

    
        






Ni Nj Nl Nk Qq

q
jl

kl
ij

Ni Nj Nk Nl Qq

q
ik

kl
ij

mm
m

lk

zxzx

LUB
t

22 )()(

)(
 (15)

)(1  
 

 
Nl Qq

q
ik

kl
ij

mm
ijk

m
ijk

k

zxtuu  (16)

)(1  
 

 
Nk Qq

q
jl

kl
ij

mm
ijl

m
ijl

l

zxtvv  (17)

For stopping criterion in Lagrangian relaxation heuristic, in our experiment we implement 3 
stopping criterion, the algorithm terminates when one of the following condition is met. 
1. The given maximum number of iterations Itermax is reached. 

2. The step size parameter n  is less than a threshold value. 
3. The  lower bound equals the best upper bound or is close to upper bound below a threshold 

value (|UB – Ln| < ). 
 
 
4 Computational Tests 
 

For testing, we use the AP data set introduced by Ernst and Krishnamoorthy [10] to build the test 
instances for the CSApHMPMC. In the case of the CSApHMPMC there are capacity levels for 
each candidate hub. The data contains up to 200 nodes of the Austria Post locations and is 
available in the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html). The instances 
with 10, 20, 25, 40, 50, 75 and 100 nodes were considered. Ernst and Krishnamoorhy [10] also 
used a combination of two types of fixed cost, tight (T) and loose (L), and two types of capacities, 
tight (T) and loose (L) for each problem size. For every problem size the four instances 
correspond to one of the four possible combinations, LL, LT, TL, and TT. The number of hubs p 
in tested instances is between 2 and 5. For the tight capacity, the number of hubs must be larger 
than 3. We extend the data set by defining five capacity levels for all candidate hubs: 1, 2, 3, 4 
and 5. Thus, 40 possible combinations exist using the number of nodes and the number of 
capacity levels. Totally, 102 instances are tested by the Lagrangian relaxation heuristic. The cost 
parameters are  = 3,  = 0.75, and  = 2. 

In order to evaluate the proposed formulations, the general solver Gurobi 4.5.2 was used 
with the running time of two hours. No change was made in the default values of the solver 
parameters apart from the time limit which was set to 2 hours. The Lagrangian relaxation 
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heuristic was coded in Microsoft Visual Studio 2010 C++. The tests were run on a PC with an 
Intel Core2 Duo 3.0GHz processor and 2.0 GB RAM under Windows 7 operation systems. 

The number of capacity levels available for each candidate hub was set the same for all 
nodes. The capacity levels for each candidate location were defined by Correia et al. [7] as 
follow. 

k
r
k BB k  and NkrqBB k

q
k

q
k   ,1,...,1,7.0 1   (18)

 
where Bk denotes the “tight” capacity for hub k in the corresponding AP instance. This means the 
largest capacity level was set equal to the tight capacity of the corresponding node in the AP data 
set instance. The fixed cost for each potential hub was defined as eq. (19). The fixed cost of a 
hub at its highest capacity level was set equal to the fixed cost of the same potential hub in the 
corresponding AP instance. Then, an increase defined by the factor  (= 1.1 in this paper) was 
assumed for the unitary capacity cost when the capacity level decreased. The value means a 10% 
increase is considered for the unitary capacity cost when the capacity level decreases. 
 

k
r

k ff k  and Nkrq
B

f
Bf kq

k

q
kq

k
q

k  



,1,...,1,
1

1

   (19)

 
After a preliminary test, we set the following parameter values: e =4, 1 = 2,  = 0.001, and 

Itermax = 1000. In this paper, we report two different capacity levels: rk = 1 and rk =5. It is noted 
that the former value corresponds to the classical CSApHMP. For the small size instances, we 
compare the results with Gurobi solutions, while the larger instances we compare with the 
solutions of CSPHLP for rk = 1.  

Table 1 shows the results of small size instances of rk = 1. In the table, the first column gives 
the instance name based on the fixed cost type, capacity type, number of nodes n and number of 
medians p. Each instance name has a suffix composed of two letters in the set {T, L}. For 
example, LL 10-2 represents the loose fixed cost and loose capacity type instance with 10 nodes 
and 2 medians. The next two columns are the optimal solution and the CPU time in seconds 
provided by Gurobi. The next two columns are the percentage gap with respect to the optimal 
solution and the CPU time provided by LR heuristic. The column headings for the next five 
columns have the same meanings as the previous five columns. The percentage gap in the table 
is computed as eq. (20). 

 

%100
Opt.

Opt. -solution  LR
gap

 
(20)

 
In Table 1, we can observe that our LR can obtain the optimal solutions for all loose fixed 

cost instances except 4 instances. The average gap of these instances 0.42%. The computational 
time of LR decreases when the number of medians increases for given number of nodes. 
However, the average computational time is longer than that of Gurobi. The possible reason 
might be that we solve the location decision subproblem (z variable) by Gurobi instead of a 
simple heuristic. Solve the location subproblem with other heuristic could be one of the future 
research directions. 
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The results for tight fixed cost type instances are not as good as those for loose fixed cost 
type instances. The LR cannot obtain optimal solutions in six instances. However, the 
computational time by LR is much smaller than that by Gurobi. Another observation is that the 
tight capacity type instance is more difficult to solve than the loose capacity type ones as 
mentioned in Ernst and Krishnamoorhy [10]. The average gap for tight capacity type instances is 
larger than that of loose capacity type instances. The computational time for tight capacity type 
instances by Gurobi is much larger than that for loose capacity type ones.  

Table 2 provides the results for the medium and large size instances of rk = 1. These 
instances cannot be solved by the Gurobi due to the two-hour time limit or out of memory. We 
compare the results with the solutions provided by Ernst and Krishnamoorhy [10] for the 
capacitated hub location problem. Our LR can obtain the optimal solutions for most of the loose 
capacity instances with shorter CPU time. The average gap for loose capacity type instances is 
smaller than those for tight capacity type instances.  

 
Table 1. The results for the small size instances with loose capacity of rk = 1 

Instance 
Gurobi  LR  

Instance
     

Opt. time  gap  Time Opt. time  gap  Time 

LL 10-2 230008.5 1.14 0.00  25.28 TL 10-2 264544.0 1.08   0.00 12.59 

LL 10-3 224250.1 1.21 0.00  2.32 TL 10-3 263399.9 1.22   0.00 2.44 

LL 10-4 229172.6 1.32 0.00  2.31 TL 10-4 269074.3 1.06   0.00 0.72 

LL 10-5 239292.3 1.21  0.00  1.28 TL 10-5 281327.3 1.09   0.00 0.30 

LL 20-2 234691.0 18.13 0.00  79.23 TL 20-2 271128.2 17.19   0.00 54.09 

LL 20-3 239444.2 20.56 0.00  35.54 TL 20-3 281304.8 18.61   0.43 29.51 

LL 20-4 251939.7 20.91 0.00  38.80 TL 20-4 295223.9 18.86   0.00 22.98 

LL 20-5 266745.2 19.00  0.00  15.18 TL 20-5 310122.8 16.85   0.00 3.50 

LL 25-2 238978.0 87.19 0.00  190.37 TL 25-2 310317.6 61.15   0.00 113.42 

LL 25-3 242437.2 88.64 0.55  132.29 TL 25-3 328092.6 215.45   0.00 90.56 

LL 25-4 252716.6 123.20 0.00  64.91 TL 25-4 347416.8 122.83   0.00 74.59 

LL 25-5 263518.3 59.97  2.87  74.68 TL 25-5 368288.6 46.82   0.07 31.63 

LT 10-2 256048.6 1.17  0.00  46.87 TT 10-2 264544.0 1.01   0.00  2.22  

LT 10-3 252973.6 1.05  0.00  137.65 TT 10-3 2633 99.9 1.12   0.00  2.25  

LT 10-4 250992.3 1.03  0.00  22.91 TT 10-4 269074.3 1.19   0.00  0.48  

LT 10-5 261451.2 1.01  0.00  38.59 TT 10-5 281327.3 1.06   0.00  0.28  

LT 20-2 253517.4 639.65  2.99  316.97 TT 20-2 329068.6 1849.93  9.80  54.97  

LT 20-3 257247.7 2079.15  3.18  18.39 TT 20-3 296035.4 24.96  0.00  70.67  

LT 20-4 260678.9 269.24  0.00  280.05 TT 20-4 306296.3 14.88  0.00  9.25  

LT 20-5 274975.4 291.50  0.00  217.75 TT 20-5 325568.5 14.57  0.58  10.97  

LT 25-3 276372.5 751.32  0.00  1494.30 TT 25-3 348369.1 442.95  1.51  99.59  

LT 25-4 278235.0 271.99  0.00  1862.89 TT 25-4 369576.8 1364.41  0.00  67.05  

LT 25-5 284952.6 122.83  0.00  377.67 TT 25-5 391996.5 357.94  1.16 38.47  

Average 211.84 0.42  238.10   199.84  0.59 34.46 
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Note that the LR is able to obtain optimal solutions in most of the loose capacity type (LL 

and TL) instances. However, the performance of our LR heuristic does not provide good 
solutions in tight capacity type instances. These results indicate that the type of configuration for 
the fixed costs and capacities affect the performance of the LR heuristic. 

 
Table 2. The results for medium and large size instances of rk = 1 

Instance 
E&K  LR 

Instance 
E&K  LR 

BKS  gap  Time BKS  gap  Time 

LL 40-2 241955.71 0.00 18.97  TL 40-2 298919.01  0.00 231.11 

LL 50-2 238520.59 0.00 564.40  TL 50-2 319015.77  0.00 381.79 

LL 75-2 238024.22 0.27 750.33  TL 75-2 303363.55  0.00  687.53 

LL 100-3 246713.97  2.78 2470.97 TL 100-3 362950.09  9.11  2430.92 

LT 40-3 272218.32a 5.36 289.24  TT 40-3 354874.10  4.66  189.44 

LT 50-4 272897.49 6.30 49.98  TT 50-4 417440.99  10.11  57.30  

LT 75-3 256188.12   1.38  650.61  TT 75-4 347189.81  0.75  629.81 

LT 100-3 256638.38  9.07 2523.17 TT 100-4 474680.32  6.21  2947.70 

Average 3.15 914.71    3.86 944.45 

 
To our knowledge, this paper is the first one to study the capacitated single allocation p-hub 

median problem with multiple capacity levels. There are no results available to compare with our 
results with multiple capacity levels. We only report the small size instances in this paper for rk = 
5. The results of the comparison between the Gurobi and LR heuristic for small size instances 
with loose and tight capacity type of rk = 5 are provided in Table 3. The headings of the column 
are the same as those in table 1.  

The results presented in table 3 show that similar results can be obtained on instances with rk 
=5. Observe that the LR cannot solve more instances for rk =5 than that of rk =1. The average 
gaps for loose fixed cost type and tight fixed cost type instances are 0.42% and 1.04%, while the 
computational times are 98.97 seconds and 126.47 seconds, respectively. The computational 
time by LR is smaller than that by Gurobi. The tight capacity type instances are more difficult to 
solve due to more decision variables are considered. There are more instances that cannot be 
solved by LR in tight capacity type instances that loose capacity type ones. 
 
 
5 Conclusion 
 

In this paper, we extend the capacitated single allocation p-hub median problem to capacitated 
single allocation p-hub median problem with multiple capacity levels (CSApHMPMC). The 
locations and their capacity levels are not determined priori, and the amount of flow collected in 
the hub is limited. Since this problem is NP-hard, we propose a Lagrangian relaxation heuristic 
to solve the problem. The LR heuristic decomposes the problem into two smaller subproblems 
that can be solved efficiently. Four sets of benchmark instances from AP hub data set with five 
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capacity levels are tested for our Lagrangian relaxation heuristic. The results are also compared 
with the Gurobi optimizer.  

The LR heuristic can obtain most of the optimal solutions in small size instances but cannot 
provide similar results for large size instances. The present study shows that the LR heuristic is 
an effective method to solve CSApHMPMC, but the computational time could be reduced by 
applying simple heuristic instead of the optimization solve for the location subproblem. In the 
future, we could further develop simple heuristic on determining the feasible hub median 
locations and also add local search to the solution found by LR to obtain better solution. Other 
research direction might to develop metaheuristic algorithms, such as GRASP or ACO, to solve 
the problem. 

 
Table 3. The results for the small size instances with loose capacity of rk = 5 

Instance 
Gurobi  LR 

Instance
Gurobi  LR 

Opt. time  gap  Time Opt. time  gap  Time 

LL 10-2 202892.36  2.84  0.00  6.42  TL 10-2 234234.24 13.20   0.00 14.97  

LL 10-3 177657.01  2.76  0.00  12.87 TL 10-3 213146.64 6.86   0.00 42.50  

LL 10-4 160975.34  2.69  0.00  41.94 TL 10-4 194630.17 11.59   0.00 41.81  

LL 10-5 144001.59  1.28   0.00  4.89  TL 10-5 179449.64 1.42   0.00 5.10  

LL 20-2 215263.24  152.64  0.00  33.79 TL 20-2 243691.58 275.53   0.00  35.03  

LL 20-3 202177.31  402.55  0.00  167.13 TL 20-3 231017.92 1547.12   0.00  148.42 

LL 20-4 196803.30  983.70  0.00  130.52 TL 20-4 220852.24 355.57   0.00  104.29 

LL 20-5 190808.20  1861.44   0.20  74.42 TL 20-5 217086.21 66.62   0.00  44.39  

LL 25-2 232315.89  3520.85  0.00  437.70 TL 25-2 280261.05 778.73   1.98  535.04 

LL 25-3 210233.16  1864.67  0.67  254.84 TL 25-3 263045.49 473.02   2.02  400.84 

LL 25-4 195607.23  85.89  3.54  225.30 TL 25-4 261269.52 4874.66   0.00  354.39 

LL 25-5 192471.63  101.67   0.00  173.49 TL 25-5 260850.78 2122.74   0.00  252.86 

LT 10-2 250459.25  3.29   0.00  1.99  TT 10-2 259071.83 3.44   0.00  2.88  

LT 10-3 226992.74  8.78   0.00  17.93 TT 10-3 236063.72 6.81   0.00  14.42  

LT 10-4 202365.75  4.11   0.00  1.24  TT 10-4 214508.00 5.45   1.30  10.34  

LT 10-5 194710.39  19.06   0.00  1.72  TT 10-5 209460.47 16.24   0.05  5.91  

LT 20-2 253517.40  45.25   2.99  46.73 TT 20-2 329068.57 645.64   9.80  55.44  

LT 20-3 240502.81  1293.07   0.00  78.91 TT 20-3 281852.11 285.94   2.02  109.17 

LT 20-4 224068.68  263.18   0.00  51.11 TT 20-4 278674.41 1542.03   0.58  67.20  

LT 20-5 219489.74  960.00   0.00  78.42 TT 20-5 271849.26 995.04   1.08  102.86 

LT 25-3 270793.41  1541.18   1.00  120.52 TT 25-3 334695.31 1020.55   1.57  220.39 

LT 25-4 263599.35  1052.89   0.60  200.57 TT 25-4 331964.31 1668.61   2.24  148.49 

LT 25-5 256303.85  906.88   0.65  113.90 TT 25-5 331515.10 316.74   1.19  192.10 

Average 655.68 0.42  98.97   740.59  1.04 126.47 
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